Maxi K+ channels and their relationship to the apical membrane conductance in Necturus gallbladder epithelium
نویسندگان
چکیده
Using the patch-clamp technique, we have identified large-conductance (maxi) K+ channels in the apical membrane of Necturus gallbladder epithelium, and in dissociated gallbladder epithelial cells. These channels are more than tenfold selective for K+ over Na+, and exhibit unitary conductance of approximately 200 pS in symmetric 100 mM KCl. They are activated by elevation of internal Ca2+ levels and membrane depolarization. The properties of these channels could account for the previously observed voltage and Ca2+ sensitivities of the macroscopic apical membrane conductance (Ga). Ga was determined as a function of apical membrane voltage, using intracellular microelectrode techniques. Its value was 180 microS/cm2 at the control membrane voltage of -68 mV, and increased steeply with membrane depolarization, reaching 650 microS/cm2 at -25 mV. We have related maxi K+ channel properties and Ga quantitatively, relying on the premise that at any apical membrane voltage Ga comprises a leakage conductance and a conductance due to maxi K+ channels. Comparison between Ga and maxi K+ channels reveals that the latter are present at a surface density of 0.09/microns 2, are open approximately 15% of the time under control conditions, and account for 17% of control Ga. Depolarizing the apical membrane voltage leads to a steep increase in channel steady-state open probability. When correlated with patch-clamp studies examining the Ca2+ and voltage dependencies of single maxi K+ channels, results from intracellular microelectrode experiments indicate that maxi K+ channel activity in situ is higher than predicted from the measured apical membrane voltage and estimated bulk cytosolic Ca2+ activity. Mechanisms that could account for this finding are proposed.
منابع مشابه
cAMP-activated apical membrane chloride channels in Necturus gallbladder epithelium. Conductance, selectivity, and block
Elevation of intracellular cAMP levels in Necturus gallbladder epithelium (NGB) induces an apical membrane Cl- conductance (GaCl). Its characteristics (i.e., magnitude, anion selectivity, and block) were studied with intracellular microelectrode techniques. Under control conditions, the apical membrane conductance (Ga) was 0.17 mS.cm-2, primarily ascribable to GaK. With elevation of cell cAMP t...
متن کاملElectrophysiological effects of basolateral [Na+] in Necturus gallbladder epithelium
In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophys...
متن کاملElectrophysiological effects of extracellular ATP on Necturus gallbladder epithelium
The effects of addition of ATP to the mucosal bathing solution on transepithelial, apical, and basolateral membrane voltages and resistances in Necturus gallbladder epithelium were determined. Mucosal ATP (100 microM) caused a rapid hyperpolarization of both apical (Vmc) and basolateral (Vcs) cell membrane voltages (delta Vm = 18 +/- 1 mV), a fall in transepithelial resistance (Rt) from 142 +/-...
متن کاملRegulation of cAMP-activated apical membrane chloride conductance in gallbladder epithelium
Regulation of the cAMP-activated apical membrane Cl- conductance (GaCl) in Necturus gallbladder (NGB) epithelial cells was investigated with intracellular-microelectrode techniques. GaCl was increased by exposure to 8-Br-cAMP, theophylline or forskolin. Neither 8-Br-cGMP nor elevation of intracellular [Ca2+] using ionomycin had effects on GaCl or interfered with activation of GaCl by forskolin....
متن کاملReconstitution of an epithelial chloride channel. Conservation of the channel from mudpuppy to man
We have previously shown that monoclonal antibody E12 (MAb E12), one of several such antibodies raised against theophylline-treated Necturus gallbladder (NGB) epithelial cells, inhibits the chloride conductance in the apical membrane of that tissue. Since chloride channels are critical to the secretory function of epithelia in many different animals, we have used this antibody to determine whet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 95 شماره
صفحات -
تاریخ انتشار 1990